电子工程系

Department of Electronic Engineering

黄翊东    博士 教授,长江学者,清华大学学术委员会副主任

中国 北京市100084  清华大学电子工程系 罗姆楼2-103A,
电话: +86-10-62797396
传真:+86-10-62770317
电子邮箱: yidonghuang@tsinghua.edu.cn

实验室主页:http://nano-oelab.ee.tsinghua.edu.cn

 

教育背景

1994年毕业于清华大学电子工程系(博士学位)。1991年至1993年作为联合培养博士生赴日本东京工业大学留学,在此期间从事了应变量子阱激光器及放大器增益特性的研究,获得优秀博士论文奖。


工作履历

1994年在NEC光-无线器件研究所任特聘研究员,从事用于光纤通信领域的1.3及1.5微米DFB激光器的研究开发工作。于1997年获得NEC一等研究功绩奖,2003年获得NEC二等研究功绩奖。

2003年7月作为清华大学“百人计划”引进人才,到清华大学电子工程系任教,2005年2月被聘为教育部长江学者特聘教授,2007年被评为“新世纪百千万人才工程”国家级人选。在2007年至2012年期间担任电子工程系副系主任,2013年至2019年期间担任系主任;2015年-2019年兼任清华大学天津电子信息研究院院长;现任清华大学学术委员会副主任。

教学经历

多年从事教学管理工作,致力于电子信息领域知识体系和人才培养的研究, 是清华大学电子信息大类课程体系的主要创建人之一。

主讲课程:
      固体物理基础 (2011-Now)
      量子电子学 (2003-Now)
      纳结构光电子学 (2004-2009)


学术兼职

现为中国光学学会常务理事、基础光学专业委员会委员、微纳光学专业委员会委员,中国电子教育学会高等教育分会理事,中国计量科学研究院计量科学咨询委员会委员,美国光学学会会士(OSA Fellow),ACS Photonics杂志副主编。

学术会议兼职:
      - TPC Chair of International Conference on information Optics and Photonics (CIOP), 2019.
      - Local Chair of International Conference on information Optics and Photonics (CIOP), 2018.
      - Committee member for the IEEE Photonics Conference, 31st Annual Conference of the IEEE Photonics
        Society (IPC),2018.
      - Technical Program Committee, Optoelectronic and Communication Conference (OECC), 2016.
      - Technical Program Committee, Semiconductor Lasers of IEEE Photonics Conference (IPC), 2016.
      - Co-Chair, International Conference on information Optics and Photonics (CIOP), 2015.
      - Technical Program Committee, Optoelectronic and Communication Conference (OECC), 2014.
      - Co-chair, Optoelectronic Materials and Devices, Asia Communications and Photonics Conference and
        Exhibition (ACP), 2011.
      - Subcommittee (SC) Co-Chair, Asia Communications and Photonics (APC), 2010.
      - Technical Program Committee, International Conference on Solid State Devices and Materials (SSDM), 2008.
      - Session Chair, Optoelectronic and Communication Conference (OECC), July 4-8, 2005.

 

研究概况

1991年至1993年在日本东京工业大学荒井研究室留学期间,从事了应变量子阱激光器及放大器增益特性的研究。首次在理论上提出拉伸应变量子阱具有高微分增益和窄线宽的新论点;采用单层拉伸变量子阱有源区结构, 成功研制出低阈值(217A/cm2)的FP腔激光器和楔形波导大功率(单模输出20.4dBm)光放大器;获得优秀博士论文奖。

1994年加入NEC光-无线器件研究所任特聘研究员,从事用于光纤通信领域的1.3及1.5微米DFB激光器的研究开发工作。提出DFB激光器“反射镜损耗反馈效应”的概念,为提高DFB激光器的性能提供了新的理论依据;发明“八分之一波长位移分布反馈”的新结构,在世界上首次实现了-20dB反射光注入状态下的无光隔离138公里传输;研究开发出独创的无温控抗反射PC-DFB激光器, 实现了从摄氏-40度到+85度的温度范围内无光隔离45公里传输;成功地研制出适合工作在高温环境下的FP腔激光器,实现了摄氏85度高温环境下无致冷工作时5mA的低阈值及输出功率5mW时仅20mA的低工作电流,是当时世界上报道的同类器件中最好的实验结果。于1997年获得NEC一等研究功绩奖,2003年获得NEC二等研究功绩奖。

2003年入选清华大学百人计划,任电子工程系教授,致力于纳结构光电子学领域的研究,承担过国家自然科学基金重点项目、973项目以及多项国际合作项目,带领课题组在光子晶体、表面等离子激元、硅基波导的研究中取得创新突破,研制出自由电子辐射、片上光谱相机、可预报单光子源、轨道角动量辐射等国际领先的集成光电子芯片;发表论文300余篇,引用数千次,获得国际专利20余项。

 

学术成果

纳结构光电子器件相关代表性论文

[1]    Xuesi Zhao, Xue Feng, Fang Liu, Kaiyu Cui, Wei Zhang, and Yidong Huang, “A Compound Phase-Modulated Beam Splitter to Distinguish Both Spin and Orbital Angular Momentum”, ACS Photonics, 2020, 7(1), 212-220, 2020.
[2]    Yu Ye, Fang Liu, Mengxuan Wang, Lixuan Tai, Kaiyu Cui, Xue Feng, Wei Zhang, and Yidong Huang “Deep-ultraviolet Smith–Purcell radiation,” Optica, 6, 592 -597, 2019.
[3]    Fei Pan, Kaiyu Cui, Guoren Bai, Xue Feng, Fang Liu, Wei Zhang and Yidong Huang, “Radiation-pressure-antidamping enhanced optomechanical spring sensing”, ACS Photonics, 2018.
[4]    Fang Liu, Long Xiao, Yu Ye, Mengxuan Wang, Kaiyu Cui, Xue Feng, Wei Zhang, Yidong Huang*, “Integrated Cherenkov Radiation Emitter Eliminating the Electron Velocity Threshold,” Nature Photonics, 11, 289, 2017.
[5]     Peng Zhao, Shikang Li, Yu Wang, Xue Feng, Kaiyu Cui, Fang Liu, Wei Zhang, and Yidong Huang, “Identifying the tilt angle and correcting the orbital angular momentum spectrum dispersion of misaligned light beam“, Scientific Reports 7, 7873, 2017.
[6]    Yu Wang, Václav Poto?ek, Stephen M. Barnett, and Xue Feng, “Programmable holographic technique for implementing unitary and nonunitary transformations”, Phys. Rev. A 95 (3), 33827, 2017.
[7]     Peng Zhao, Shikang Li, Xue Feng, Kaiyu Cui, Fang Liu, Wei Zhang, and Yidong Huang, “Measuring the complex orbital angular momentum spectrum of light with mode matching method”, Optics Letters, 42(6), 1080-1083, 2017.
[8]    Shuai Dong, Xin Yao, Wei Zhang, Sijing Chen, Weijun Zhang, Lixing You, Zhen Wang, and Yidong Huang, “True Single-Photon Stimulated Four-Wave Mixing”, ACS Photonics, 4(4),746-753, 2017.
[9]    Yu Wang, Peng Zhao, Xue Feng, Yuntao Xu, Fang Liu, Kaiyu Cui, Wei Zhang, and Yidong Huang, “Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum”, Scientific Reports 6, 36269, 2016.
[10]    Shuai Dong, Wei Zhang, Yidong Huang, and Jiangde Peng, “Long-distance temporal quantum ghost imaging over optical fibers”, Scientific Reports, 6,26022, 2016.
[11]    Zhilei Huang, Kaiyu Cui, Yongzhuo Li, Xue Feng, Fang Liu, Wei Zhang, and Yidong Huang, “Strong Optomechanical Coupling in Nanobeam Cavities based on Hetero Optomechanical Crystals”, Scientific Reports, 5, 15964, 2015.
[12]    Yunxiang Li, Fang Liu, Yu Ye, Weisi Meng, Kaiyu Cui, Xue Feng, Wei Zhang, and Yidong Huang, “Two-surface-plasmon-polariton-absorption based lithography using 400 nm femtosecond laser,” Applied Physics Letters, 104(8), 081115, 2014.
[13]    Yunxiang Li, Fang Liu, Long Xiao, Kaiyu Cui, Xue Feng, Wei Zhang, and Yidong Huang, “Two-surface-plasmon-polariton-absorption based nanolithography,” Applied Physics Letters, 102(6), 063113, 2013.
[14]    Boyu Fan, Fang Liu, Xiaoyan Wang, Yunxiang Li, Kaiyu Cui, Xue Feng, and Yidong Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Applied Physics Letters, 102(6), 061109, 2013.
[15]    Qi Xu, Fang Liu, Yuxiang Li, Kaiyu Cui, Xue Feng, Wei Zhang, and Yidong Huang, “Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles,” Scientific Reports, 3, 2112, 2013.
[16]    Kaiyu Cui, Xue Feng, Yidong Huang, Qiang Zhao, Zhilei Huang, and Wei Zhang, “Broadband switching functionality based on defect mode coupling in W2 photonic crystal waveguide,” Applied Physics Letters, 101(15), 151110, 2012.
[17]    Di Qu, Fang Liu, Jiafan Yu, Wanlu Xie, Qi Xu, Xiangdong Li, and Yidong Huang, “Plasmonic core-shell gold nanoparticle enhanced optical absorption inphotovoltaic devices,” Applied Physics Letters, 98(11), 113119, 2011.
[18]    Ruiyuan Wan, Fang Liu, and Yidong Huang, “Ultrathin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Optics Letters, 35(2), 244-246, 2010.
[19]    Fang Liu, Yidong Huang, Dai Ohnishi, Wei Zhang, and Jiangde Peng, “Hybrid three-arm coupler with long range surface plasmon polariton and dielectric waveguides,” Applied Physics Letters, 90(24), 241120, 2007.

面向光纤通信半导体光电器件相关代表性论文:

[20]    Y.Huang, K. Sato, T. Okuda, N. Suzuki, S. Ae, Y. Muroya, K. Mori, T. Sasaki, and K. Kobayashi, "Low-chirp and external optical feedback resistant characteristics in ?/8 phase-shifted DFB-LDs under direct modulation", IEEE J. Quantum Electron. vol. 35, no. 11, pp. 1479-1484, 2002.
[21]    Y. Huang, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, "Isolator-free 2.5-Gb/s, 80-km transmission by directly modulated ?/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss", IEEE Photo. Tech. Lett., vol. 13, no. 3, pp. 245-247, 2001.
[22]    Y. Huang, T. Okuda, K. Shiba, Y. Muroya, N. Suzuki, and K. Kobayashi, "External optical feedback resistant 2.5-Gb/s transmission of partially corrugated waveguide laser diodes over a -40 to 80 C temperature range", IEEE Photo. Tech. Lett., vol. 11, no. 11, pp. 1482-1484, 1999.
[23]    Y. Huang, T. Okuda, K. Shiba, and T. Torikai, "High-yield external optical feedback resistant partially-corrugated-waveguide laser diodes", IEEE J. Quantum Electron., vol. 5, no. 3, pp. 435-441, 1999.
[24]    Y. Huang, H. Yamada, T. Okuda, T. Torikai, and T. Uji, "External optical feedback resistant characteristics in partially-corrugated-waveguide laser diodes", Electron. Lett., vol. 32, no. 11, pp. 1008-1009, 1996.
[25]    Y. Huang, K. Komori, K. Komori, and S. Arai, "Saturation characteristics of Ga1-xInxAs/GaInAsP/ InP tensile-strained QW semiconductor laser amplifiers with tapered waveguide structures", IEEE J. Quantum Electron., vol. 30, no. 9, pp. 2034-2039, 1994.
[26]    Y. Huang, K. Komori, and S. Arai, "Reduction of noise figure in semiconductor laser amplifiers with Ga1-xInxAs/GaInAsP/InP strained quantum well structure", IEEE J. Quantum Electron., vol. 29, no. 12, pp. 2950-2956, 1993.
[27]    Y. Huang, S. Arai, and K. Komori, "Theoretical linewidth enhancement factor of Ga1-xInxAs/ GaInAsP/InP strained quantum well structures", IEEE Photo. Tech. Lett., vol.5, no.2, pp.142-145, 1993.