电子工程系

Department of Electronic Engineering

戴凌龙 博士、副教授、博士生导师

中国北京市清华大学电子工程系罗姆楼709室 100084
电话:+86-10-62773782
传真:+86-10-62795153
邮箱:daill@tsinghua.edu.cn

个人主页:http://oa.ee.tsinghua.edu.cn/dailinglong/


个人简介

戴凌龙,男,重庆人,中共党员,现为清华大学电子工程系副教授、博士生导师。先后于2003年、2006年、2011年在浙江大学信息与电子工程学系、电信科学技术研究院、清华大学电子工程系获工学学士、硕士、博士学位。2011年至2013年在清华大学电子工程系做博士后,2013年7月起留校任教,研究方向为宽带无线通信。

在无线通信领域有着多年的硬件开发和系统研究经验。在我国3G标准TD-SCDMA终端硬件平台设计、验证、测试等方面有多年的研发经验,曾参与TD-SCDMA在北京、天津等地的大规模试商用实验,其作为核心技术骨干参与的3G终端低功耗软硬件设计方案已获多项国家发明专利,并已大规模应用于三星、诺基亚等厂商的3G商用手机。作为技术骨干参与我国新一代地面数字电视标准DTMB-A的研发工作(该标准于2015年7月被正式确定为国际电信联盟(ITU)标准),博士论文《新一代中国地面数字电视演进标准的关键技术研究》获北京市优秀博士学位论文奖、全国优秀博士学位论文提名奖。目前的研究重点是第五代移动通信(5G)标准和关键技术,特别是大规模MIMO、毫米波通信、非正交多址接入等技术。

先后作为项目负责人主持国家973计划子课题、国家国际科技合作专项、国家自然科学基金面上项目及青年项目、国内外知名通信企业合作研究等项目多项,在多载波技术、多天线技术、多址接入技术等方面积累了较为丰富的科研经验。目前指导博士后1名、博士生7名(含留学生1名)、硕士生1名。讲授本科生课程《通信信号处理》、《移动通信与卫星通信》及研究生课程《高等通信信号处理》。

共发表SCI收录IEEE系列期刊论文50余篇,EI收录IEEE系列国际会议论文30余篇,期刊论文主要发表于IEEE Journal on Selected Areas in Communications(第一/通讯作者论文共10篇)、IEEE Wireless Communications、IEEE Communications Magazine、IEEE Transactions on Signal Processing、IEEE Transactions on Wireless Communications、IEEE Transactions on Communications、IEEE Transactions on Vehicular Technology等权威国际期刊,国际会议论文主要发表于IEEE ICC、IEEE GLOBECOM等权威国际会议。出版英文专著《mmWave Massive MIMO: A Paradigm for 5G》及中文译著《压缩感知理论及其在无线网络中的应用》。已获国家发明专利授权13项。

曾获2009年清华大学优秀学生干部、2010年清华大学综合优秀一等奖学金、2010年GE科技创新大赛全国一等奖、2011年第16届清华大学研究生学术新秀、2011年清华大学优秀博士学位论文奖、2011年清华大学优秀博士毕业生、2012年北京市优秀博士学位论文奖、2013年IEEE ICC国际会议最佳论文奖、2013年全国优秀博士学位论文提名奖、2013年清华大学优秀博士后、2014年IEEE ICC国际会议最佳论文奖、2014年国际无线电科学联盟青年科学家奖、2015年权威国际期刊IEEE Transactions on Broadcasting年度唯一最佳论文奖、2015年IEEE RADIO国际会议青年科学家奖、2016年亚太电波科学大会青年科学家奖、2016年无线通信与信号处理国际会议最佳论文奖、2016年IEEE Communications Letters模范审稿人、2016年IEEE Transactions on Communications模范审稿人、2016年中国通信学会科学技术奖(自然科学类)二等奖(第一完成人)等多项国际国内奖项。

目前担任国际核心期刊IEEE Transactions on Communications编委、IEEE Transactions on Vehicular Technology编委、IEEE Communications Letters编委、IEEE Journal on Selected Areas in Communications毫米波通信专刊客座编委、IEEE Wireless Communications非正交多址接入技术专刊客座主编、IEEE通信学会5G信号处理技术特别小组共同主席。

 

 

教育背景

2007.09 – 2011.06    清华大学  电子工程系                 博士 
2003.09 – 2006.06    电信科学技术研究院                   硕士 
1999.09 – 2003.06    浙江大学  信息与电子工程学系   学士 

 

 

工作履历

2016.04 - 今            清华大学 电子工程系           副教授、博士生导师
2013.07 - 2016.03   清华大学 电子工程系           助理教授、博士生导师
2011.06 - 2013.06   清华大学 电子工程系           博士后
2006.07 - 2007.08   大唐-飞利浦联合研发中心    硬件工程师

 

 

学术兼职

IEEE Transactions on Communications编委
IEEE Transactions on Vehicular Technology编委
IEEE Communications Letters编委
IEEE Journal on Selected Areas in Communications客座编委
IEEE Wireless Communications客座编委
IEEE 通信学会5G信号处理技术特别小组共同主席
IEEE JSAC/TSP/TWC/TCOM/TVT/CL等多个权威SCI期刊审稿人
IEEE ICC、GLOBECOM等多个权威国际会议技术委员会委员
IEEE Senior Member

 

研究领域

宽带无线通信
通信信号处理
5G关键技术(大规模MIMO、毫米波通信、非正交多址接入等)
压缩感知理论及其在无线通信中的应用

 

研究概况

在无线通信领域有着多年的硬件开发和系统研究经验。曾作为技术骨干参与我国新一代地面数字电视标准DTMB-A的研发工作,该标准于2015年7月被确正式定为国际电信联盟(ITU)标准。目前研究重点是第五代移动通信(5G)标准和关键技术,特别是Massive MIMO、毫米波通信、非正交多址接入等。先后作为项目负责人主持国家973计划子课题、国家国际科技合作专项、国家自然科学基金面上项目和青年项目、国内外知名通信企业合作研究等项目多项,在多载波技术、多天线技术、多址接入技术等方面积累了较为丰富的科研经验。共发表SCI收录IEEE系列期刊论文50余篇,EI收录IEEE系列国际会议论文30余篇,出版英文专著1本、中文译著1本,获国家发明专利授权13项。曾获2013年全国优秀博士学位论文提名奖、2013年IEEE ICC国际会议最佳论文奖、2014年IEEE ICC国际会议最佳论文奖、2015年权威国际期刊IEEE Transactions on Broadcasting年度唯一最佳论文奖、2016年中国通信学会科学技术奖(自然科学类)二等奖(第一完成人)等多项国际国内奖项。目前担任国际核心期刊IEEE Transactions on Communications编委、IEEE通信学会5G信号处理技术特别小组共同主席等。

 

奖励与荣誉

(1)   2016年中国通信学会科学技术奖(自然科学类)二等奖(第一完成人)
(2)   2016年IEEE Transactions on Communications模范审稿人
(3)   2016年IEEE Communications Letters模范审稿人
(4)   2016年第八届无线通信与信号处理国际会议最佳论文奖
(5)   2016年亚太电波科学大会青年科学家奖
(6)   2015年IEEE RADIO国际会议青年科学家奖
(7)   2015年国际权威期刊IEEE Transactions on Broadcasting年度唯一最佳论文奖
(8)   2014年国际无线电科学联盟青年科学家奖
(9)   2014年国际通信大会最佳论文奖
(10) 2013年全国优秀博士学位论文提名奖
(11) 2013年国际通信大会最佳论文奖
(12) 2013年清华大学优秀博士后
(13) 2012年中国博士后科学基金特别资助
(14) 2012年北京市优秀博士学位论文奖
(15) 2011年清华大学优秀博士毕业生
(16) 2011年清华大学优秀博士学位论文奖
(17) 2011年清华大学学术新秀
(18) 2010年GE科技创新大赛全国一等奖
(19) 2010年清华大学综合优秀一等奖学金
(20) 2009年清华大学优秀学生干部

 

 

学术成果

专著

[1] S. Mumtaz, J. Rodriquez, and L. Dai, MmWave Massive MIMO: A Paradigm for 5G, Academic Press, Elsevier, ISBN: 978-0128044186, 2016.

译著

[1] 戴凌龙、王昭诚、李云洲:《压缩感知理论及其在无线网络中的应用》,清华大学出版社,2017.

专著章节

[1] S. Mumtaz, J. Rodriquez, and L. Dai, “Introduction to mmWave Massive MIMO,” in MmWave Massive MIMO: A Paradigm for 5G, Chapter 1, pp. 1-18, Academic Press, Elsevier, 2016.

[2] X. Gao, L. Dai, Z. Gao, T. Xie, Z. Wang, and S. Mumtaz, “Precoding for mmWave Massive MIMO,” in MmWave Massive MIMO: A Paradigm for 5G, Chapter 5, pp. 79-111, Academic Press, Elsevier, 2016.

[3] Z. Gao, L. Dai, C. Hu, X. Gao, S. Mumtaz, and Z. Wang, “Channel Estimation for mmWave Massive MIMO” in MmWave Massive MIMO: A Paradigm for 5G, Chapter 6, pp. 113-139, Academic Press, Elsevier, 2016.

[4] Z. Gao, L. Dai, X. Gao, M. Z. Shakir, and Z. Wang, “Fronthaul Design for mmWave Massive MIMO,” in MmWave Massive MIMO: A Paradigm for 5G, Chapter 12, pp. 289-312, Academic Press, Elsevier, 2016.

期刊论文

[1] B. Wang, L. Dai, Z. Waqng, N. Ge, and S. Zhou, “Spectrum and energy efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array,” to appear in IEEE J. Sel. Areas Commun., 2017.

[2] J. Zhang, L. Dai, Z. He, S. Jin, and X. Li, “Performance analysis of mixed-ADC massive MIMO systems over Rician fading channels,” to appear in IEEE J. Sel. Areas Commun., 2017.

[3] W. Shen, L. Dai, Y. Zhang, J. Li, and Z. Wang, “On the performance of channel statistics-based codebook for massive MIMO channel feedback,” to appear in IEEE Trans. Veh. Technol., 2017.
 
[4] X. Gao, L. Dai, Y. Zhang, T. Xie, X. Dai, and Z. Wang, “Fast channel tracking for terahertz beamspace massive MIMO systems,” to appear in IEEE Trans. Veh. Technol., 2017.

[5] X. Zhu, L. Dai, Z. Wang, and X. Wang, “Weighted graph coloring based pilot decontamination for multi-cell massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 66, no. 3, pp. 2829-2834, Mar. 2017.

[6] Y. Yang, Y. Zhang, L. Dai, J. Li, S. Mumtaz, and J. Rodriguezi, “Transmission capacity analysis of relay-assisted device-to-device overlay/underlay communication,” IEEE Trans. Industrial Informatics, vol. 13, no. 1, pp. 380-389, Feb. 2017.

[7] Z. Gao, L. Dai, C. Qi, C. Yuen, and Z. Wang, “Near-optimal signal detector based on structured compressive sensing for massive SM-MIMO,” IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 1860-1865, Feb. 2017.

[8] Y. Zhang, Y. Yang, and L. Dai, “Energy efficiency maximization for device-to-device communication underlaying cellular networks on multiple bands,” IEEE Access, vol. 4, pp. 7682-7691, Nov. 2016.

[9] B. Wang, L. Dai, T. Mir, and J. Li, “Dynamic compressive sensing based multi-user detection for uplink grant-free NOMA,” IEEE Commun. Lett., vol. 20, no. 11, pp. 2320-2323, Nov. 2016.

[10] J. Zhang, L. Dai, X. Zhang, E. Bjornson, and Z. Wang, “Achievable rate of Rician large-scale MIMO channels with transceiver hardware impairments,” IEEE Trans. Veh. Technol., vol. 65, no. 10, pp. 8800-8806, Oct. 2016.

[11] W. Shen, L. Dai, Y. Shi, B. Shim, and Z. Wang, “Joint channel training and feedback for FDD massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 65, no. 10, pp. 8762-8767, Oct. 2016.

[12] Z. Gao, L. Dai, Z. Wang, S. Chen, and L. Hanzo, “Compressive sensing based multi-user detector for large-scale SM-MIMO uplink,” IEEE Trans. Veh. Technol., vol. 65, no. 10, pp. 8725-8730, Oct. 2016.

[13] X. Gao, L. Dai, C. Yuen, and Z. Wang, “Turbo-like beamforming based on tabu search algorithm for millimeter-wave massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 65, no. 7, pp. 5731-5737, Jul. 2016.

[14] B. Wang, L. Dai, T. Mir, and Z. Wang, “Joint user activity and data detection based on structured compressive sensing for NOMA,” IEEE Commun. Lett., vol. 20, no. 7, pp. 1473-1476, Jul. 2016.

[15] Z. Gao, L. Dai, C. Hu, and Z. Wang, “Channel estimation for millimeter-Wave massive MIMO with hybrid precoding over frequency-selective fading channels,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1259-1262, Jun. 2016.

[16] X. Gao, L. Dai, Z. Chen, Z. Wang, and Z. Zhang, “Near-optimal beam selection for beamspace mmWave massive MIMO systems,” IEEE Commun. Lett., vol. 20, no. 5, pp. 1054-1057, May 2016.

[17] J. Zhang, L. Dai, S. Sun, and Z. Wang, “On the spectral efficiency of massive MIMO systems with low-resolution ADCs,” IEEE Commun. Lett. , vol. 20, no. 5, pp. 842-845, May 2016.

[18] X. Gao, L. Dai, S. Han, C.-L. I, and R. W. Heath, “Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 998-1009, Apr. 2016.

[19] Z. Ding, L. Dai, and H. V. Poor, “MIMO-NOMA design for small packet transmission in the Internet of things,” IEEE Access, vol. 4, pp. 1393-1405, Apr. 2016.

[20] T. Xie, L. Dai, X. Gao, X. Dai, and Y. Zhao, “Low-complexity SSOR-based precoding for massive MIMO systems,” IEEE Commun. Lett., vol. 20, no. 4, pp. 744-747, Apr. 2016.

[21] Z. Gao, L. Dai, W. Dai, B. Shim, and Z. Wang, “Structured compressive sensing based spatio-temporal joint channel estimation for FDD massive MIMO,” IEEE Trans. Commun., vol. 64, no. 2, pp. 601-617, Feb. 2016.

[22] Z. Gao, L. Dai, Z. Wang, and S. Chen, “Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO”, IEEE Trans. Signal Process., vol. 63, no. 23, pp. 6169-6183, Dec. 2015.

[23] W. Shen, L. Dai, B. Shim, S. Mumtaz, and Z. Wang, “Joint CSIT acquisition based on low-rank matrix completion for FDD massive MIMO systems,” IEEE Commun. Lett., vol. 19, no. 12, pp. 2178-2181, Dec. 2015.

[24] L. Dai, X. Gao, X. Su, S. Han, C.-L. I, and Z. Wang, “Low-complexity soft-output signal detection based on Gauss-Seidel method for uplink multi-user large-scale MIMO Systems,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4839-4845, Oct. 2015.

[25] Z. Gao, L. Dai, D. Mi, Z. Wang, M. A. Imran, and M. Z. Shakir, “MmWave massive MIMO based wireless backhaul for 5G ultra-dense network,” IEEE Wireless Commun., vol. 22, no. 5, pp. 13-21, Oct. 2015.

[26] X. Zhu, L. Dai, and Z. Wang, “Graph coloring based pilot allocation to mitigate pilot contamination for multi-cell massive MIMO systems,” IEEE Commun. Lett., vol. 19, no. 10, pp. 1842-1845, Oct. 2015.

[27] [J21] W. Shen, L. Dai, X. Zhu, and Z. Wang, “Compressive sensing based differential channel feedback for massive MIMO,” Electron. Lett. vol. 51, no. 22, pp. 1824-1826, Oct. 2015.

[28] Z. Gao, L. Dai, C. Yuen, and Z. Wang, “Asymptotic orthogonality analysis of time-domain sparse massive MIMO channels,” IEEE Commun. Lett., vol. 19, no. 10, pp. 1826-1829, Oct. 2015.

[29] L. Dai, B. Wang, Y. Yuan, S. Han, C.-L. I, and Z. Wang, “Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag., vol. 53, no. 9, pp. 74-81, Sep. 2015.

[30] J. Zhang, L. Dai, Y. Han, Y. Zhang, and Z. Wang, “On the ergodic capacity of MIMO free-space optical systems over turbulence channels,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1925-1934, Sep. 2015.
 
[31] X. Gao, L. Dai, Y. Hu, Y. Zhang, and Z. Wang, “Low-complexity signal detection for large-scale MIMO in optical wireless communications,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1903-1912, Sep. 2015.

[32] J. Zhang, L. Dai, W. H. Gerstacker, and Z. Wang, “Effective capacity of communication systems over κ-μ shadowed fading channels,” Electron. Lett., vol. 51, no. 19, pp. 1540-1542, Sep. 2015.

[33] J. Zhang, L. Dai, Y. Zhang, and Z. Wang, “Unified performance analysis of mixed radio fequency/free-space optical dual-hop transmission systems,” IEEE/OSA J. Lightwave Technol., vol. 33, no. 11, pp. 2286-2293, Jun. 2015.

[34] W. Shen, L. Dai, Z. Gao, and Z. Wang, “Spatially correlated channel estimation based on block iterative support detection for massive MIMO,” Electron. Lett., vol. 51, no.7, pp. 587-588, Apr. 2015.

[35] X. Gao, L. Dai, Y. Ma, and Z. Wang, “Low-complexity near-optimal signal detection for uplink large-scale MIMO systems,” Electron. Lett., vol. 50, no. 18, pp. 1326-1328, Aug. 2014.

[36] Z. Gao, L. Dai, Z. Lu, C. Yuen, and Z. Wang, “Super-resolution sparse MIMO-OFDM channel estimation based on spatial and temporal correlations,” IEEE Commun. Lett., vol. 18, no. 7, pp. 1266-1269, Jul. 2014.

[37] Z. Gao, L. Dai, and Z. Wang, “Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems,” Electron. Lett., vol. 50, no. 12, pp. 896-898, Jun. 2014.

[38] L. Dai, Z. Xu, and Z. Wang, “Flexible multi-block OFDM transmission for high-Speed fiber-wireless networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 12, pp. 788-796, Dec. 2013.

[39] L. Dai, J. Wang, Z. Wang, P. Tsiaflakis, and M. Moonen, “Spectrum- and energy-efficient OFDM based on simultaneous multi-channel reconstruction,” IEEE Trans. Signal Process., vol. 61, no. 23, pp. 6047-6059, Dec. 2013.

[40] L. Dai, Z. Wang, and Z. Yang, “Compressive sensing based time domain synchronous OFDM transmission for vehicular communications,” IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. no. 460-469, Sep. 2013.

[41] L. Dai, Z. Wang, and Z. Yang, “Spectrally efficient time-frequency training OFDM for mobile large-scale MIMO systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 251-263, Feb. 2013.

[42] L. Dai, C. Zhang, Z. Xu, and Z. Wang, “Spectrum-efficient coherent optical OFDM for transport networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 1, pp. 62-74, Jan. 2013.

[43] L. Dai, Z. Wang, C. Pan, and S. Chen, “Wireless positioning using TDS-OFDM signals in single-frequency networks,” IEEE Trans. Broadcast., vol. 58, no. 2, pp. 236-246, Jun. 2012.

[44] L. Dai, Z. Wang, and Z. Yang, “Next-generation digital television terrestrial broadcasting systems: Key technologies and research trends,” IEEE Commun. Mag., vol. 50, no. 6, pp. 150-158, Jun. 2012.

[45] L. Dai, Z. Wang, and Z. Yang, “Time-frequency training OFDM with high spectral efficiency and reliable performance in high speed environments,” IEEE J. Sel. Areas Commun., vol. 30, no. 4, pp. 695-707, May 2012.

[46] L. Dai, and Z. Wang, “Time-frequency training OFDM,” Electron. Lett., vol. 47, no. 20, pp. 1128-1129, Sep. 2011.

[47] L. Dai, Z. Wang, and S. Chen, “A novel uplink multiple access scheme based on TDS-FDMA,” IEEE Trans. Wireless Commun., vol. 10, no. 3, pp. 757-761, Mar. 2011.

Conference Papers

[1]   X. Gao, L. Dai, Y. Sun, S. Han, and C.-L. I, “Machine learning inspired energy-efficient hybrid precoding for mmWave massive MIMO systems,” in Proc. IEEE Int. Conf. Commun. (IEEE ICC’17), Paris, France, May 2017.
 
[2]   W. Shen, L. Dai, G. Gui, Z. Wang, R. W. Heath, and F. Adachi, “AoD-adaptive subspace codebook for channel feedback in FDD massive MIMO systems,” in Proc. IEEE Int. Conf. Commun. (IEEE ICC’17), Paris, France, May 2017.

[3]   X. Gao, L. Dai, S. Han, C.-L. I, and F. Adachi, “Beamspace channel estimation for 3D lens-based millimeter-wave massive MIMO systems,” in Proc. 8th Int. Conf. Wireless Commun. Signal Process. (WCSP’16), Yangzhou, China, Oct. 2016. (WCSP 2016 Best Paper Award)

[4]   L. Dai and X. Gao, “Priori-aided channel tracking for millimeter-wave beamspace massive MIMO systems,” in Proc. URSI Asia-Pacific Radio Science Conf. (URSI AP-RSAC’16), Seoul, Korea, Aug. 2016. (URSI AP-RSAC’16 Young Scientist Award)

[5]   L. Dai, X. Gao, S. Han, C.-L. I, and X. Wang, “Beamspace channel estimation for millimeter-wave massive MIMO systems with lens antenna array,” in Proc. IEEE Int. Conf. Commun. China (IEEE ICCC’16), Chengdu, China, Jul. 2016.

[6]   J. Zhang, L. Dai, M. Matthaiou, C. Masouros, and S. Jin, “On the spectral efficiency of space-constrained massive MIMO with linear receivers,” in Proc. IEEE Int. Conf. Commun. (IEEE ICC’16), Kuala Lumpur, Malaysia, May 2016.

[7]   Z. Gao, L. Dai, and Z. Wang, “Channel estimation for mmWave massive MIMO based access and backhaul in ultra-dense network,” in Proc. IEEE Int. Conf. Commun. (IEEE ICC’16), Kuala Lumpur, Malaysia, May 2016.

[8]   W. Shen, L. Dai, Y. Shi, Z. Gao, and Z. Wang, “Massive MIMO channel estimation based on block iterative support detection,” in Proc. IEEE Wireless Commun. Netw. Conf. (IEEE WCNC’16), Doha, Qatar, Apr. 2016.

[9]   L. Dai, G. Gui, W. Dai, Z. Wang, and F. Adachi, “Structured matching pursuit for reconstruction of dynamic sparse channels,” in Proc. IEEE Global Commun. Conf. (IEEE GLOBECOM’15), San Diego, USA, Dec. 2015.

[10]  J. Zhang, L. Dai, Z. Wang, D. W. K. Ng, and W. Gerstacker, “Effective rate analysis of MISO systems over alpha-mu fading channels,” in Proc. IEEE Global Commun. Conf. (IEEE GLOBECOM’15), San Diego, USA, Dec. 2015.

[11]  L. Dai, Z. Gao, and Z. Wang, “Joint channel estimation and feedback with low overhead for FDD massive MIMO systems,” in Proc. IEEE/CIC Int. Conf. Commun. China (IEEE/CIC ICCC’15), Shenzhen, China, Nov. 2015. (Invited Paper)

[12]  X. Zhu, L. Dai, W. Dai, Z. Wang, and M. Moonen, “Tracking a dynamic sparse channel via differential orthogonal matching pursuit,” in Proc. IEEE Military Commun. Conf. (IEEE MILCOM’15), Tampa, USA, Oct. 2015.

[13]  Z. Gao, L. Dai, W. Shen, and Z. Wang, “Temporal correlation based sparse channel estimation for TDS-OFDM in high-speed scenarios,” in Proc. IEEE Military Commun. Conf. (IEEE MILCOM’15), Tampa, USA, Oct. 2015. (IEEE MILCOM 2015 Student Travel Grant)

[14]  L. Dai, X. Gao, and Z. Wang, “Energy-efficient hybrid precoding with low complexity based on successive interference cancelation for millimeter-wave massive MIMO systems,” in Proc. IEEE Radio and Antenna Days of the Indian Ocean ( IEEE RADIO’15), Mauritius, Sep. 2015. (IEEE RADIO 2015 Young Scientist Award)

[15]  B. Wang, L. Dai, Y. Yuan, and Z. Wang, “Compressive sensing based multi-user detection for uplink grant-free non-orthogonal multiple access,” in Proc. IEEE 82th Veh. Technol. Conf. (IEEE VTC’15 Fall), Boston, USA, Sep. 2015.

[16]  L. Dai, X. Gao, J. Quan, S. Han, and C.-L. I, “Near-optimal hybrid analog and digital precoding for downlink mmWave massive MIMO systems,” in Proc. IEEE Int. Conf. Commun. (IEEE ICC’15), London, UK, Jun. 2015.

[17]  X. Gao, L. Dai, J. Zhang, S. Han, and C.-L. I, “Capacity-approaching linear pecoding with low-complexity for large-scale MIMO systems,” in Proc. IEEE Int. Conf. Commun. (IEEE ICC’15), London, UK, Jun. 2015.

[18]  Z. Gao, L. Dai, W. Dai, and Z. Wang, “Block compressive channel estimation and feedback for FDD massive MIMO,” in Proc. IEEE Int. Conf. Computer Commun. (IEEE INFOCOM’15) Workshop, Hong Kong, Apr. 2015.

[19]  W. Shen, L. Dai, Z. Gao, and Z. Wang, “Joint CSIT acquisition based on low-rank matrix recovery for FDD massive MIMO systems,” in Proc. IEEE Int. Conf. Computer Commun. (IEEE INFOCOM’15) Workshop, Hong Kong, Apr. 2015.

[20]  X. Gao, L. Dai, Y. Hu, Z. Wang, and Z. Wang, “Matrix inversion-less signal detection using SOR method for uplink large-scale MIMO systems,” in Proc. IEEE Global Commun. Conf. (IEEE GLOBECOM’14), Austin, USA, Dec. 2014.

[21]  X. Gao, L. Dai, C. Yuen, and Y. Zhang, “Low-complexity MMSE signal detection based on Richardson method for large-scale MIMO systems” in Proc. IEEE 80th Veh. Technol. Conf. (IEEE VTC’14 Fall), Vancouver, Canada, Sep. 2014.

[22]  L. Dai, Z. Gao, Z. Wang, and Z. Yang, “Spectrum-efficient superimposed pilot design based on structured compressive sensing for large-scale MIMO systems” in Proc. URSI General Assembly and Scientific Symposium (URSI GASS’14), Beijing, China, Aug. 2014. (URSI Young Scientist Award 2014)

[23]  G. Gui, L. Dai, S. Kumagai, and F. Adachi, “Variable earns profit: Improved adaptive channel estimation using sparse VSS-NLMS algorithms,” in Proc. IEEE Int. Conf. Commun. (IEEE ICC’14), Sydney, Australia, Jun. 2014. (IEEE ICC 2014 Best Paper Award)

[24]  L. Dai, Z. Wang, Z. Yang, G. Gui, and F. Adachi, “Reliable and energy-efficient OFDM based on structured compressive sensing,” in Proc. IEEE Int. Conf. Commun. (IEEE ICC’14), Sydney, Australia, Jun. 2014.

[25]  L. Dai and Z. Wang, “Signaling-embedded preamble design for flexible optical transport networks,” in Proc. IEEE 79th Veh. Technol. Conf. (IEEE VTC’14 Spring), Soul, Korea, May 2014.

[26]  L. Dai, J. Wang, Z. Wang, P. Tsiaflakis, and M. Moonen, “Time domain synchronous OFDM based on simultaneous multi-channel reconstruction,” in Proc. IEEE Int. Conf. Commun. (IEEE ICC’13), Budapest, Hungary, Jun. 2013. (IEEE ICC 2013 Best Paper Award)

[27]  L. Dai and Z. Wang, “Spectrally efficient time-frequency training OFDM for MIMO systems,” in Proc. IEEE Wireless Commun. Netw. Conf. (IEEE WCNC’13), Shanghai, China, Apr. 2013.

[28]  L. Dai and Z. Wang, “Spectrum-efficient coherent optical zero padding OFDM for future high-speed transport networks,” in Proc. IEEE Global Commun. Conf. (IEEE GLOBECOM’12), Anaheim, USA, Dec. 2012.

[29]  L. Dai, Z. Wang, J. Wang, and J. Wang, “Time-frequency training OFDM with high spectral efficiency and improved performance over fast fading channels,” in Proc. IEEE Global Commun. Conf. (IEEE GLOBECOM’11), Houston, USA, Dec. 2011.

[30]  L. Dai, Z. Wang, C. Pan, and S. Chen, “Positioning in chinese digital television network using TDS-OFDM signals”, in Proc. the IEEE Int. Conf. Commun. (IEEE ICC’11), Kyoto, Japan, Jun. 2011.

[31]  L. Dai, Z. Wang, J. Wang, and J. Wang, “Transmit diversity scheme for TDS-OFDM systems with reduced complexity”, in Proc. the IEEE Int. Conf. Commun. (IEEE ICC’11), Kyoto, Japan, Jun. 2011.

[32]  L. Dai, J. Wang, Z. Wang, J. Wang, “TDS-OFDM transmit diversity based on space-time shifted CAZAC sequence”, in Proc. the IEEE Global Commun. Conf. (IEEE GLOBECOM’10), Miami, USA, Dec. 2010.

[33]  L. Dai, Z. Wang, J. Wang, Z. Yang, “A novel TDS-FDMA scheme for multi-user uplink scenarios”, in Proc. the IEEE Global Commun. Conf. (IEEE GLOBECOM’10), Miami, USA, Dec. 2010.

[34]  L. Dai, Z. Wang, J. Wang, J. Wang, and Y. Zhang, “Accurate position location in TDS-OFDM based digital television broadcasting networks”, in Proc. the 21st Annual IEEE Int. Symp. Personal, Indoor Mobile Radio Commun. (IEEE PIMRC’10), Istanbul, Turkey, Sep. 2010.

[35]  L. Dai, Z. Wang, J. Wang, J. Song, “Joint code acquisition and doppler frequency shift estimation for GPS signals”, in Proc. the 72nd IEEE Veh. Technol. Conf. (IEEE VTC’10 Fall), Ottawa, Canada, Sep. 2010.

[36]  L. Dai, J. Fu, J. Wang, J. Song, Z. Yang, “A novel time domain synchronous orthogonal frequency division multiple access scheme”, in Proc. the IEEE Global Commun. Conf. (IEEE GLOBECOM’09), Hawaii, USA, Nov. 2009.